Enriched Indexed Categories

نویسنده

  • MICHAEL SHULMAN
چکیده

We develop a theory of categories which are simultaneously (1) indexed over a base category S with finite products, and (2) enriched over an S-indexed monoidal category V . This includes classical enriched categories, indexed and fibered categories, and internal categories as special cases. We then describe the appropriate notion of “limit” for such enriched indexed categories, and show that they admit “free cocompletions” constructed as usual with a Yoneda embedding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Algebraic Compactness

Alas, the motivating examples of algebraically compact categories are not algebraically compact, and the enriched setting does not directly support the theory of algebraic compactness. We show that the structural setting, the same setting developed independently for models of linear logic, directly supports the theory of algebraic cocompleteness. We extend the structural setting to a bistructur...

متن کامل

What is a Categorical Model of Arrows?

We investigate what the correct categorical formulation of Hughes’ Arrows should be. It has long been folklore that Arrows, a functional programming construct, and Freyd categories, a categorical notion due to Power, Robinson and Thielecke, are somehow equivalent. In this paper, we show that the situation is more subtle. By considering Arrows wholly within the base category we derive two altern...

متن کامل

The Grothendieck Construction and Gradings for Enriched Categories

The Grothendieck construction is a process to form a single category from a diagram of small categories. In this paper, we extend the definition of the Grothendieck construction to diagrams of small categories enriched over a symmetric monoidal category satisfying certain conditions. Symmetric monoidal categories satisfying the conditions in this paper include the category of k-modules over a c...

متن کامل

Idempotents of double Burnside algebras, L-enriched bisets, and decomposition of p-biset functors

Let R be a (unital) commutative ring, andG be a finite group with order invertible in R. We introduce new idempotents εT,S in the double Burnside algebra RB(G,G) of G over R, indexed by conjugacy classes of minimal sections (T, S) of G (i.e. sections such that S ≤ Φ(T )). These idempotents are orthogonal, and their sum is equal to the identity. It follows that for any biset functor F over R, th...

متن کامل

Convergence and quantale-enriched categories

Generalising Nachbin's theory of ``topology and order'', in this paper we   continue the study of quantale-enriched categories equipped with a compact   Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces   with ultrafilter-quantale-enriched categories, and show that the presence of a   compact Hausdorff topology guarantees Cauchy completeness and (suitably   defined) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013