Enriched Indexed Categories
نویسنده
چکیده
We develop a theory of categories which are simultaneously (1) indexed over a base category S with finite products, and (2) enriched over an S-indexed monoidal category V . This includes classical enriched categories, indexed and fibered categories, and internal categories as special cases. We then describe the appropriate notion of “limit” for such enriched indexed categories, and show that they admit “free cocompletions” constructed as usual with a Yoneda embedding.
منابع مشابه
Structural Algebraic Compactness
Alas, the motivating examples of algebraically compact categories are not algebraically compact, and the enriched setting does not directly support the theory of algebraic compactness. We show that the structural setting, the same setting developed independently for models of linear logic, directly supports the theory of algebraic cocompleteness. We extend the structural setting to a bistructur...
متن کاملWhat is a Categorical Model of Arrows?
We investigate what the correct categorical formulation of Hughes’ Arrows should be. It has long been folklore that Arrows, a functional programming construct, and Freyd categories, a categorical notion due to Power, Robinson and Thielecke, are somehow equivalent. In this paper, we show that the situation is more subtle. By considering Arrows wholly within the base category we derive two altern...
متن کاملThe Grothendieck Construction and Gradings for Enriched Categories
The Grothendieck construction is a process to form a single category from a diagram of small categories. In this paper, we extend the definition of the Grothendieck construction to diagrams of small categories enriched over a symmetric monoidal category satisfying certain conditions. Symmetric monoidal categories satisfying the conditions in this paper include the category of k-modules over a c...
متن کاملIdempotents of double Burnside algebras, L-enriched bisets, and decomposition of p-biset functors
Let R be a (unital) commutative ring, andG be a finite group with order invertible in R. We introduce new idempotents εT,S in the double Burnside algebra RB(G,G) of G over R, indexed by conjugacy classes of minimal sections (T, S) of G (i.e. sections such that S ≤ Φ(T )). These idempotents are orthogonal, and their sum is equal to the identity. It follows that for any biset functor F over R, th...
متن کاملConvergence and quantale-enriched categories
Generalising Nachbin's theory of ``topology and order'', in this paper we continue the study of quantale-enriched categories equipped with a compact Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces with ultrafilter-quantale-enriched categories, and show that the presence of a compact Hausdorff topology guarantees Cauchy completeness and (suitably defined) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013